RCT -1 DIGITAL ELECTRONICS

Date...... April, 2015

Time.....30 Min.

Each Question.....1 Mark

(No Negative Marking)

Q1. A number in signed binary 2's complement form is stored in a 4 bit register as .

- 1				
۱	1	0	0	1
١	-	o .	o .	-
- 1				

This number when stored in an 8 bit register, is

a	1	0	0	1	1	0	0	1
b	0	0	0	0	1	0	0	1
С	1	1	1	1	1	0	0	1
d	1	0	0	1	1	1	1	1

- Q2. Consider two signed binary numbers in 2's complement form P = 11101, Q = 10100 If P is subtracted from Q, the result expressed in 8 bit signed binary 2's complement form
 - (a) 11011001
 - (b) 11110111
 - (c) 00001001
 - (d) 11111001
- Q3. The range of integers that can be expressed using 6 bits in signed binary 2's complement form.
 - (a) -31 to +31
 - (b) -64 to +63

- (c) -63 to +63
- (d) -32 to +31
- Q4. Octal equivalent of (235)7
 - (a) 160
- (b) 174
- (c) 183
- (d) 236
- Q5. The binary equivalent of the Gray code 100.11011
 - (a) 11011011
- (b) 10011110
- (c) 11010110
- (d) 11101101
- Q6. Decimal equivalent of the number expressed in signed binary 1's complement form as 110101100
 - (a) 83
- (b) 87
- (c) 84
- (d) -92

1

RCT -1 DIGITAL ELECTRONICS

Answer Key

1	C	2	В	3	D
4	В	5	D	6	A
