EMFT

===

- 1. A field $\vec{A} = 3x^2yz\hat{a}_x + x^3z\hat{a}_y + (x^3y 2z)\hat{a}_z$ can be termed as
	- (a) Harmonic (b) Divergence less (c) Solenoidal
		- (d) Rotational
- 2. Given $\vec{F} = z\hat{a}_x + x\hat{a}_y + y\hat{a}_z$, represents the portion of the sphere $x^2 + y^2 + z^2 = 1$ for $z \ge 0$. Then \int_{s} $(\vec{\nabla} \vec{X} \vec{F})$. ds is ……………………………?
- 3. The following four fields are given in Cartesian co-ordinate system. The vector field which does not satisfy the property of magnetic flux density is

(a)
$$
y^2 \hat{a}_x + z^2 \hat{a}_y + x^2 \hat{a}_z
$$

(b)
$$
x^2\hat{a}_x + z^2\hat{a}_y + y^2\hat{a}_z
$$

4. A steady current I is flowing in the x-direction through of two infinitely long wires at $y = \pm \frac{1}{2}$ as shown in figure. The permibility of medium is μ_0 . The \vec{B} field at (0, L, 0) is

$$
(a) - \frac{4\mu_0 I}{3\pi L} \hat{a}_z
$$

$$
(b) + \frac{4\mu_0 I}{3\pi L} \hat{a}_z
$$

$$
(c) 0
$$

- $(d) \frac{3\mu_0 I}{4\pi L} \hat{a}_z$ 5. Let $\vec{\nabla}$. (f. \vec{v}) = $x^2y + y^2z + z^2x$, where f is scalar and v is vector. If $\vec{v} = y\hat{i} + j\hat{j} + x\hat{k}$. Then $\vec{v} \cdot (\vec{\nabla} f)$
- is
	- (a) $x^2y + y^2z + z^2x$ (b) $2xy + 2yz + 2zx$ (c) 0 (d) None of the above
- 6. Two semi-infinite dielectric regions are separated by a plane boundary at $y = 0$. The $\epsilon_{r_1} = 2$, $(y < 0)$ and $\epsilon_{\text{r}_2} = 5$, (y > 0). The (y < 0) region 1 has uniform electric field $\vec{E} = 3\hat{a}_x + 4\hat{a}_y + 2\hat{a}_z$. The electric field in region 2 ($y > 0$) is
	- (a) $\vec{E}_2 = 3\hat{a}_x + 10\hat{a}_y + 0.8\hat{a}_z$ (b) $\vec{E}_2 = 3\hat{a}_x + 1.6\hat{a}_y + 2\hat{a}_z$ (c) $\vec{E}_2 = 1.2\hat{a}_x + 4\hat{a}_y + 0.8\hat{a}_z$ (d) $\vec{E}_2 = 1.2\hat{a}_x + 4\hat{a}_y + 2\hat{a}_z$
- 7. If the electric field intensity is given by $\vec{E} = (x\hat{a}_x + y\hat{a}_y + z\hat{a}_z)V/m$. The potential difference between point P $(2,0,0)$ and Q $(1,2,3)$ is
	- $(a) +1$ Volt (c) +5 Volt
- (b) -1 Volt $(d) +6$ Volt 8. Let the radial component for the spherical co-ordinate system is given by the equation $|A| = \frac{5}{4}r^2$,
	- where $\sqrt{x^2 + y^2 + z^2} = 1$. Then the value of the integral $\oint \vec{A} \cdot d\vec{s} = ?$

(c) $z^2\hat{a}_x + x^2\hat{a}_y + y^2\hat{a}_z$ (d) $y^2z^2\hat{a}_x + x^2z^2\hat{a}_y + x^2y^2\hat{a}_z$

Full Length Test - 1 [ECE/EE] EMFT

EMFT

- === (a) $\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = P_s$ (b) $\hat{n} X (\vec{H}_1 - \vec{H}_2) = \hat{k}$ (c) $\hat{n} \cdot (\vec{B}_1 - \vec{B}_2) = 0$ (d) $\hat{n} X (\vec{D}_1 - \vec{D}_2) = P_s$ 18. Consider a vector field $\vec{A}(r)$. The closed loop line integral $\oint \vec{A}$. dl can be expressed as (a) $\oint_C (\vec{\nabla} \times \vec{A})$. ds (c) $\iint_V (\vec{\nabla} \cdot \vec{A}) dV$
- (b) $\oint f(x, \vec{A}) dV$ (d) $\iint_{S} (\vec{\nabla} \times \vec{A}) ds$ 19. The longitudinal component of the magnetic field inside an air-field rectangular wave-guide made of a perfect electric conductor is given by the following expression.

 $H_z = 0.1 cos(2πx) cos(30.3 πy) cos(12π X 10⁹t – βz) A/m$

The cross-sectional dimensions of W.G. are $a = 0.08$ m, $b = 0.0033$ m. The mode of propagation inside the guide is

(a) Tm_{12}

(d) TE_{12}

(c) Tm_{21}

(b) TE_{21} 20. The type of polarization and the frequency of wave for electric field wave are

- $\vec{E} = 10(\hat{v} + i\hat{z})e^{-j2\pi x}$
- (a) 1.2 GHz, RCP (b) 1.2 GHz, LCP
- 21. Inductance and capacitance per unit length of a lossless transmission line are 250 nH/m and 0.1 nF/m respectively. The velocity of the wave propagation and characteristic impedance of the transmission line are respectively.
	- (a) $2 \text{ X } 10^8 \text{ m/s}$, 100Ω

(d) $3 X 10^8$ m/s, 100Ω

- (b) $3 X 10^8$ m/s, 50Ω
- 22. A transmission line has the characteristic impedance Z_0 and the voltage standing wave ratio is S. The line impedance on the transmission line at voltage maximum and minimum are respectively.
	- (a) $Z_0S, \frac{Z_0}{S}$ S

(b)
$$
\frac{Z_0}{S}
$$
, Z_0S

- (c) Z_0S , Z_0S
- 23. A lossless transmission line of characteristic impedance $Z_0 = 25\Omega$ is connected to a load impedance $Z_L = (15 - j25)Ω$. What will be the standing wave ratio on the line?
- 24. A $\lambda/4$ section of a 100 Ω lossless transmission line terminated in a 150Ω resistive load is preceded by another $\frac{\lambda}{4}$ section of a 200 Ω lossless line as shown in figure. What is the input impedance, $Z_{\rm in}$ (in Ω)?

(d) $\frac{Z_0}{S}, \frac{Z_0}{S}$ S

- (c) 4 GHz, RCP (d) 4 GHz, LCP
- (c) 2×10^8 m/s, 50Ω

EMFT

(b) $\alpha = R \sqrt{\frac{c}{L}}$ (c) $\alpha = R \sqrt{\frac{L}{C}}$