- 1. A field $\vec{A} = 3x^2yz\hat{a}_x + x^3z\hat{a}_y + (x^3y 2z)\hat{a}_z$ can be termed as
 - (a) Harmonic

(c) Solenoidal

(b) Divergence less

- (d) Rotational
- 2. Given $\vec{F} = z\hat{a}_x + x\hat{a}_y + y\hat{a}_z$, represents the portion of the sphere $x^2 + y^2 + z^2 = 1$ for $z \ge 0$. Then $\int_S (\vec{\nabla} X \vec{F}) ds$ is?
- 3. The following four fields are given in Cartesian co-ordinate system. The vector field which does not satisfy the property of magnetic flux density is
 - (a) $y^2 \hat{a}_x + z^2 \hat{a}_y + x^2 \hat{a}_z$

(c) $z^2 \hat{a}_x + x^2 \hat{a}_y + y^2 \hat{a}_z$

(b) $x^2 \hat{a}_x + z^2 \hat{a}_y + y^2 \hat{a}_z$

- (d) $y^2z^2\hat{a}_x + x^2z^2\hat{a}_y + x^2y^2\hat{a}_z$
- 4. A steady current I is flowing in the x-direction through of two infinitely long wires at $y=\pm\frac{1}{2}$ as shown in figure. The permibility of medium is μ_0 . The \vec{B} field at (0,L,0) is
 - $(a)\,-{\textstyle\frac{4\mu_0I}{3\pi L}}{\hat a}_z$
 - (b) $+\frac{4\mu_{0}I}{3\pi L}\hat{a}_{z}$
 - (c) 0
 - $(d) \frac{{}^{3\mu_0I}}{{}^{4\pi L}} \boldsymbol{\hat{a}}_z$

- 5. Let $\vec{\nabla}$. (f. \vec{v}) = $x^2y + y^2z + z^2x$, where f is scalar and v is vector. If $\vec{v} = y\hat{i} + j\hat{j} + x\hat{k}$. Then \vec{v} . ($\vec{\nabla}$ (f)) is
 - (a) $x^2y + y^2z + z^2x$

(c) 0

(b) 2xy + 2yz + 2zx

- (d) None of the above
- 6. Two semi-infinite dielectric regions are separated by a plane boundary at y = 0. The $\epsilon_{r_1} = 2$, (y < 0) and $\epsilon_{r_2} = 5$, (y > 0). The (y < 0) region 1 has uniform electric field $\vec{E} = 3\hat{a}_x + 4\hat{a}_y + 2\hat{a}_z$. The electric field in region 2 (y > 0) is
 - (a) $\vec{E}_2 = 3\hat{a}_x + 10\hat{a}_y + 0.8\hat{a}_z$

(c) $\vec{E}_2 = 1.2\hat{a}_x + 4\hat{a}_y + 0.8\hat{a}_z$

(b) $\vec{E}_2 = 3\hat{a}_x + 1.6\hat{a}_y + 2\hat{a}_z$

- (d) $\vec{E}_2 = 1.2\hat{a}_x + 4\hat{a}_y + 2\hat{a}_z$
- 7. If the electric field intensity is given by $\vec{E} = (x\hat{a}_x + y\hat{a}_y + z\hat{a}_z) V/m$. The potential difference between point P (2,0,0) and Q (1,2,3) is
 - (a) +1 Volt

(c) +5 Volt

(b) -1 Volt

- (d) +6 Volt
- 8. Let the radial component for the spherical co-ordinate system is given by the equation $|A| = \frac{5}{4}r^2$, where $\sqrt{x^2 + y^2 + z^2} = 1$. Then the value of the integral $\oiint \vec{A} \cdot \vec{ds} = ?$

Full Length Test - 1 [ECE/EE]

EMFT

9. A parallel plate capacitor has two layers of dielectrics with permitivities $\epsilon_1 = 3\epsilon_0$ and $\epsilon_2 = 2\epsilon_0$ as shown in figure. Then the capacitance without dielectric is C_0 . Then the new capacitance across AB is

(a)
$$2C_0$$

(b)
$$3C_0$$

(c)
$$\frac{C_0}{2}$$

(d)
$$\frac{C_0}{3}$$

10. The magnetic field at a distance r from the center of the wire is proportional to

(a) r for
$$r < a$$
 and $\frac{1}{r^2}$ for $r > a$

(c) r for
$$r < a$$
 and $\frac{1}{r}$ for $r > a$

(b) 0 for
$$r < a$$
 and $\frac{1}{r}$ for $r > a$

(d) 0 for
$$r < a$$
 and $\frac{1}{r^2}$ for $r > a$

11. If the current element represented by 4 X $10^{-4} \hat{a}_y$ Amp-m is placed in a magnetic field $\vec{H} = \frac{5}{\mu} \hat{a}_x$ A/m, the force on current element is

(a)
$$-2\hat{a}_z$$
 mN

$$(c) -2\hat{a}_z N$$

(b)
$$2\hat{a}_z$$
 mN

12. Which one of the following is not a Maxwell's equation?

(a)
$$\nabla X \vec{H} = (\sigma + j\omega \epsilon)\vec{E}$$

(d)
$$\oint \vec{B} \cdot \partial \vec{s} = 0$$

(b)
$$\vec{F} = Q[\vec{E} + \vec{v} \times \vec{B}]$$

(c)
$$\oint \vec{H} \cdot d\vec{l} = \oint \vec{J} \cdot \partial \vec{s} + \oint \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$$

13. If $\vec{E} = (\hat{a}_x + j\hat{a}_y)e^{j(\omega t - Bz)}$ and $\vec{H} = \frac{k}{\omega \mu}(\hat{a}_y + j\hat{a}_x)e^{j(\omega t - Bz)}$, the average pointing vector is

$$(d)\,\frac{{}^{k}}{{}^{2\omega\mu}}{\hat a}_z$$

(b)
$$\frac{k}{\omega \mu} \hat{a}_z$$

(c)
$$\frac{2k}{\omega\mu} \hat{a}_z$$

14. If the electric field intensity associated with a uniform EM plane wave traveling in a perfect dielectric medium is given by $E(z,t)=10\cos(2\pi\,X\,10^7t-0.1\pi z)\,V/m$. Then the phase velocity v_p of the wave is

(c)
$$6.28 \times 10^7 \text{ m/sec}$$

(b)
$$2 \times 10^8 \text{ m/sec}$$

(d)
$$2 \times 10^7 \text{ m/sec}$$

15. In free space \vec{H} field is given as $\vec{H}(z,t) = -\frac{1}{6\pi}\cos(\omega t + Bz)\hat{a}_y$, then E(z,t) = ?

(a)
$$20\cos(\omega t + Bz)\hat{a}_x$$

(c)
$$20 \sin(\omega t + Bz)\hat{a}_y$$

(b)
$$20\cos(\omega t + Bz)\hat{a}_z$$

(d)
$$20 \sin(\omega t + Bz)\hat{a}_x$$

16. A uniform plane wave in air incident at 45^0 angle on a lossless materials with dielectric constant ϵ_r . The transmitted wave propagating with angle 30^0 with respect to normal. The value of ϵ_r is

(b)
$$\sqrt{1.5}$$

(d)
$$\sqrt{2}$$

17. Which one of the following is not boundary condition at an interface between two media?

Full Length Test - 1 [ECE/EE]

EMFT

(a)
$$\hat{\mathbf{n}} \cdot (\vec{\mathbf{D}}_1 - \vec{\mathbf{D}}_2) = P_s$$

(c)
$$\hat{\mathbf{n}} \cdot (\vec{\mathbf{B}}_1 - \vec{\mathbf{B}}_2) = 0$$

(b)
$$\hat{\mathbf{n}} \mathbf{X} \left(\overrightarrow{\mathbf{H}}_1 - \overrightarrow{\mathbf{H}}_2 \right) = \hat{\mathbf{k}}$$

(d)
$$\hat{\mathbf{n}} \mathbf{X} (\vec{\mathbf{D}}_1 - \vec{\mathbf{D}}_2) = P_s$$

18. Consider a vector field $\vec{A}(r)$. The closed loop line integral $\oint \vec{A} \cdot d\vec{l}$ can be expressed as

(a)
$$\oiint_{S} (\overrightarrow{\nabla} X \overrightarrow{A}) . d\overrightarrow{s}$$

(c)
$$\iiint_{\mathbf{V}} (\vec{\nabla} \cdot \vec{\mathbf{A}}) \cdot d\mathbf{V}$$

(b)
$$\oiint_{V} (\overrightarrow{\nabla}.\overrightarrow{A}) dV$$

(d)
$$\iint_{S} (\vec{\nabla} \times \vec{A}) ds$$

19. The longitudinal component of the magnetic field inside an air-field rectangular wave-guide made of a perfect electric conductor is given by the following expression.

$$H_z = 0.1 \cos(2\pi x) \cos(30.3 \pi y) \cos(12\pi X \cdot 10^9 t - \beta z) A/m$$

The cross-sectional dimensions of W.G. are a = 0.08 m, b = 0.0033 m. The mode of propagation inside the guide is

20. The type of polarization and the frequency of wave for electric field wave are

$$\vec{E} = 10(\hat{v} + j\hat{z})e^{-j2\pi x}$$

21. Inductance and capacitance per unit length of a lossless transmission line are 250 nH/m and 0.1 nF/m respectively. The velocity of the wave propagation and characteristic impedance of the transmission line are respectively.

(a)
$$2 \times 10^8 \text{ m/s}, 100\Omega$$

(c)
$$2 \times 10^8 \text{ m/s}, 50\Omega$$

(b)
$$3 \times 10^8 \text{ m/s}, 50\Omega$$

(d)
$$3 \times 10^8 \text{ m/s.} 100\Omega$$

22. A transmission line has the characteristic impedance Z_0 and the voltage standing wave ratio is S. The line impedance on the transmission line at voltage maximum and minimum are respectively.

(a)
$$Z_0S, \frac{Z_0}{S}$$

(d)
$$\frac{Z_0}{S}$$
, $\frac{Z_0}{S}$

(b)
$$\frac{Z_0}{S}$$
, Z_0S

(c)
$$Z_0S$$
, Z_0S

23. A lossless transmission line of characteristic impedance $Z_0=25\Omega$ is connected to a load impedance $Z_L=(15-j25)\Omega$. What will be the standing wave ratio on the line?

24. A $^{\lambda}/_{4}$ section of a 100 Ω lossless transmission line terminated in a 150 Ω resistive load is preceded by another $^{\lambda}/_{4}$ section of a 200 Ω lossless line as shown in figure. What is the input impedance, Z_{in} (in Ω)?

Full Length Test - 1 [ECE/EE]

EMFT

25. A coaxial-cable with an inner diameter of 1 mm and outer diameter of 2.4 mm is filled with a dielectric of relative permittivity 10.89. Given $\mu_0 = 4\pi\,X\,10^{-7}\,H/m$, $\epsilon_0 = \frac{10^{-9}}{36\pi}\,F/m$, the characteristic impedance of the cable is

(a) 330Ω

(c) 143.3Ω

(b) 100 Ω

- (d) 43.4Ω
- 26. A ideal lossless transmission line of $Z_0 = 60\Omega$ is connected to unknown Z_L . If SWR = 4, find Z_L .

(a) 240Ω

(c) 120Ω

(b) 480 Ω

- (d) 100Ω
- $27. \, Z_L = 200 \Omega$ and it is desired that $Z_{in} = 50 \Omega$. The quarter wave transformer should have a characteristic impedance of

(a) 100Ω

(c) 10000Ω

(b) 40Ω

- (d) 4 Ω
- 28. What is the attenuation constant α for distortion less transmission line?

(a) $\alpha = 0$

(d) $\alpha = \sqrt{\frac{RL}{C}}$

(b)
$$\alpha = R \sqrt{\frac{C}{L}}$$

(c)
$$\alpha = R\sqrt{\frac{L}{C}}$$