- Q1. Lead time consumption is 500 units. Annual consumption is 8000 units. Company maintains safety stock of 200 units. Recorder point is
 - (a) 500 units
- (b) 700 units
- (c) 200 units
- (d) none of these
- Q2. If the earliest starting time for an activity is 8 weeks, latent finish time is 37 weeks & duration of activity is 11 weeks, total float is
 - (a) 18 weeks
- (b) 14 weeks
- (c) 56 weeks
- (d) 40 weeks

Q3.

$$Min Z = 12x_1 + 20x_2$$

$$6x_1 + 8x_2 \ge 100$$

$$7x_1 + 12x_2 \ge 120$$

$$x_1 \ge 0, x_2 \ge 0$$

Find minimum Z

(a) 150

(b) 110

(c) 205

- (d)410
- Q4. Consider following LP problem

Max
$$Z = 3x_1 + 2x_2$$

 $x_1 \le 4$
 $x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, x_2 \ge 0$

a) It has unique optimal solution

- b) It is infeasible solution
- c) Unbound solution
- d) Multiple optimal solution

Common data for (4) & (5)

Min
$$Z = -x_1 + 2x_2$$

 $x_1 - x_2 \le -1$
 $-0.5x_1 + x_2 \le 2$
 $x_1 \ge 0, x_2 \ge 0$

- Q5. Find minimum Z
 - (a) 2
- (b) 0
- (c)4
- (d) 5
- Q6. Find coordinates (x_1, x_2) corresponding to min Z
 - (a)(1,0)
- (b)(0,1)
- (c)(0,2)
- (d)(2,3)

Q7.

$$Max Z = 4x_1 + 3x_2$$
$$x_1 - x_2 \le 0$$
$$x_1 \le 4$$
$$x_1 \ge 0, \quad x_2 \ge 0$$

- a) Solution is unbound
- b) Infeasible
- c) Unique optimal
- d) Multiple optimal

1

COMMON DATA (8)

Optimal simplex table is shown below

Basic	x_{l}	x_2	S_1	S_2	S_3	b
S_1	1.6	0	1	-0.2	0	6
x_2	0.4	1	0	0.2	0	4
S ₃	0.8	0	0	-0.6	1	6
Z_i	4	10	0	2	0	40
$c_j - z_j$	0	0	0	-2	0	

Q8. Which of following is true

- a) It is minimization problem
- b) It has unbound solution
- c) It has unique solution
- d) It has multiple optimal solution

COMMON DATA (9) & (10)

Optimum simplex table is shown below

	c_{j}	2	5	0	0	0	
$c_{\scriptscriptstyle B}$	Basic	x_{l}	x_2	S_1	S_2	<i>S</i> ₃	b
5	x_2	0	1	1/3	0	-1/3	5
0	s_2	0	0	2/3	1	-11/3	4
2	x_1	1	0	$-\frac{1}{3}$	0	4/3	4
	NER	0	0	-1	0	-1	

Q9. Find optimal solution

a)
$$Z_{\text{max}} = 33$$

b)
$$Z_{\min} = 33$$

c)
$$Z_{\text{max}} = 40$$

d)
$$Z_{\min} = 40$$

Q10. Optimal solution is obtained at (x_1, x_2)
