Date.....April, 2015 Time......30 Min. Each Question.....1 Mark (No Negative Marking)

- Q1. A solid copper ball of mass 500 grams, when quenched in a water bath at 30°C, cools from 530°C to 430°C in 10 seconds. The temperature of the ball after the next 10 seconds is ______ K
- Q2. A copper sphere weighing 3 kg is heated in a furnace to a temperature of 300° C and is suddenly taken out and allowed to cool in ambient air at 25°C. If it takes 60 min for the copper sphere to cool down to 35°C, what is the average surface heat transfer coefficient. $\rho_{copper} = 8950 kg / m^3$, $C_p = 383 kJ / kg^{\circ}C$. Also assume biot no. to be less than 0.1
 - (a) $0.045 w / m^2 K$ (b) $45.33 w / m^2 K$
 - (c) $4.53 w / m^2 K$ (d) $453 w / m^2 K$
- Q3. A finned surface consists of root or base area of 1 m² and fin surface area of 2 m². The average heat transfer coefficient for finned surface is 20 w/m²K. Efficiency of fins provided is 0.75. if finned surface with root or base temperature of 50^oC is transferring heat to a fluid at 30^oC. then rate of heat transfer is _____ watt

- Q4. A 5 mm diameter spherical ball at 50° C is covered by a 1 mm thick plastic insulation (k = 0.13 w/m^oC). The ball is exposed to a medium at 15° C, with a convection heat transfer coefficient of 20 w/m² C. The plastic insulation will
 - a) Decrease the heat transfer from the wire
 - b) Not effect the heat transfer from the wire
 - c) Increase the heat transfer from the wire
 - d) None of the above

A cold can of juice $\left[m=2.5kg,c_p=4200J/Kg^0C\right]$ at 5⁰C is left on table in a room. Average temperature of the drink is observed to rise to 15⁰C in 30 minutes. The average rate of heat transfer to the drink is

- (a) 23 w (b) 29 w
- (c) 58 w (d) 88 w
- Q6. Alluminium fins $(\eta_{fin} = 0.99)$ of triangular profile are attached to a plane wall whose surface temperature is 250°C. The fin base thickness is 2 mm and its length is 6 mm. The system is in ambient air at a temperature of 20°C and the surface convection coefficient is 40 w/m²k. The fin effectiveness is

ENGINEERS CAREER POINT PANCHKULA: SCO-211, TOP FLOOR, SECTOR 14, PKL 9815411737, 0172-4061483 PATIALA : SCB-7 TOP FLOOR,CHOTTI BARADARI, 9855273076

HI	
Q7. The Biot number can be thought of as the ratio	c) Water flowing at a uniform average
of	velocity
a) The conduction thermal resistance to the convective thermal resistance	d) An air filled room in which air is circulated with help of a fan
b) The convective thermal resistance to the	Q10. A cylindrical resistor of 1.2 cm length and 0.3
conduction thermal resistance	cm diameter dissipates 0.15 W of power in an
c) The thermal energy storage capacity to	environment at 40°C. if heat to be transferred
the convective thermal resistance	uniformly from all surfaces, and for a
d) The thermal energy storage capacity to	convective heat transfer coefficient of 9 w/m ²
the convection thermal resistance	C, the surface temperature of the resistor is
Q8. An electronic semiconductor device generate heat equal to 480×10^{-3} watts in order to keep surface temperature at the upper safe limit of 70^{0} C, the generated heat is to be dissipated to the surrounding which is at 30^{0} C to accomplish this task, Alluminium fins of $[0.7 mm]^{2}$ cross section and 12 mm long are attached to the surface. The thermal conductivity of Alluminium fins is 170 w/mK. The heat transfer coefficient h is 12 w/m ² k. If the tip is assumed to be insulated	
the no. of fins required are	
Q9. A rectangular fin with length L and cross section area A is used to dissipate heat from a body in different surrounding conditions. The fin will be most effective in which of the	
following surrounding conditions	

- a) Still water
- b) Still air
